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COMMENT 

Berry’s phase and wavefunctions for time-dependent 
Hamilton systems 

P G L Leach? 
PMMS-CNRS, 3A av de la Recherche Scientifique, F-45071 Orltans ctdex 2, France 

Received 19 March 1990 

Abstract. An alternative derivation of Berry’s phase to that given by Morales is given for 
non-autonomous Hamiltonian systems which admit an energy-like first integral. The 
generality of the problems treated is greater. 

In a fairly recent letter to this journal (Morales 1988), Berry’s phase (Berry 1984) and 
Hannay’s angle (Hannay 1985, Berry 1985) werc calculated for the system described 
by the quadratic Hamiltonian: 

through an adaptation of the work of Lewis and Riesenfeld (1969) on the time- 
dependent harmonic oscillator with Hamiltonian: 

H ( q , p ,  t )  = 3 { P 2 + W 2 ( t ) q 2 )  (2) 
and of Lewis (1967, 1968) on the behaviour of (2) in the adiabatic limit. In this 
comment we wish to demonstrate an alternative derivation of Morales’ results. The 
derivation is based on earlier work on time-dependent quadratic Hamiltonians (Leach 
1977a, b) and time-dependent Hamiltonians (Lewis and Leach 1982a, b, Leach et a1 
1984) which possess energy-like first integrals (or invariants; either term is taken to 
mean a non-trivial function of the canonical variables and time, the total time derivative 
of which is zero along trajectories). In addition to rederiving Morales’ results for (1) 
by our alternative treatment we in fact obtain a more general result which clearly 
illustrates the nature of Berry’s phase in the case of time-dependent Hamiltonians of 
the type mentioned above. We start with the most general Hamiltonian of T +  V type 
which possesses a first integral quadratic in the momentum. The Hamiltonian is (Lewis 
and Leach 1982b): 

where V (  a )  and p ( t )  are arbitrary functions of their arguments. (As usual, overdot 
means total differentiation with respect to time.) The associated first integral is: 

t Permanent address: CAMS-CNLS, Wits 2050, South Africa. 
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More generally one could replace q by q - (U( t )  with suitable modifications to H and 
I (Lewis and Leach 1982b), but our argumentation is unchanged in its essence and 
the expressions derived more compact. The first thing to realise is that Z is just H 
after a generalised canonical transformation (Munier et a1 1981), but still expressed 
in terms of the old coordinates. The formal procedure is as follows. Under the linear 
point canonical transformation: 

( 5 )  
P 

(3) becomes 

and, when this is followed by the time transformation: 

one obtains: 

&Q, p, T ) = t { P 2 +  

which is obviously Z (4). 
If one wishes to solve the time-dependent Schrodinger equation: 

a* H+=iA- 
a t  (9) 

for H (3), one simply makes use of the transformations ( 5 )  and (7)  and the solution 
of the time-dependent Schrodinger equation for fi (8) 

Hereafter we assume that V(Q) is such that (L“ has discrete states. Then the solution 
of (10) is: 

in(Q, = p n ( Q )  exp( -i 2 T )  

where p n (  Q )  is the eigenfunction of  

2 
h p ~ + y ( h , , - V ) p * , = O  pn(*cO)=O. 

The solution of (9) is just: 

* = c C n * n (  4, t )  

where 

* n (  432) = IPl-”2pn (a) exp [ -i 2 T+% i P 2  ; q 1. 
Of relevance to the calculation of Berry’s phase is the T-free part of (14), namely 
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which, in fact, is the solution of (12) when allowance is made for the change of 
co-ordinates. Berry's phase is given by: 

r r  

where 7 is the time taken to traverse a closed loop in parameter space. This is actually 
a generalisation of the result to be found in Morales (1988) and has a rather interesting 
structure being the product of two quite distinct parts, the expectation value of Q2 for 
the corresponding autonomous system and the time-dependent integral. We note that 
it is always the expectation value of Q2, no matter the potential. The reason is to be 
found in the exponential term of ( 1 5 )  which is the only term which contributes to (16) 
and so may be said to be the source of Berry's phase in such problems. 

The discussion above must be modified in the case of the Hamiltonian ( 1 )  due to 
the presence of the mixed terms in q and p .  However, as ( 1 )  is simply a quadratic 
Hamiltonian, it can be readily treated by the method of time-dependent linear canonical 
transformations (Leach 1977a, b). In brief the Hamiltonian 

(17) ~ = l  T 2~ AZ 

where zT = ( qT, p') and A ( t )  is a 2n x 2 n  Hermitian matrix, is transformed to: 

(18) R f$& 

t= sz (19) 

S = JAS - SJA (20) 

by the time-dependent linear canonical transformation 

provided the 2n x 2 n  matrix S ( t )  satisfies: 

and 

SJS' = J (21) 

The wavefunction of the time-dependent Schrodinger equations for H and are, in 
general, related by an integral transform, but, in the case that (19) is a point canonical 
transformation, this collapses to a geometric transformation of the type evident in the 
transition from ( 1 1 )  to (14) (Wolf 1979). The requirement that (19) be a point 
transformation amounts to the imposition of a restriction which must be compensated. 
It would be natural to choose A as the identity matrix. This is possible only if X, Y 
and 2 satisfy a constraint. However, if one takes A as a function of time times the 
identity, the constraint becomes a differential equation for the unknown function which 
may subsequently be removed by a transformation of the time variable thus making 
the total transformation a generalised canonical transformation. 
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Writing S, A and A as: 

S = ( S ,  0 )  *=( X Y  ) A = p - ’ ( O  1 0  1> 
s3 s4 Y Z  

(20) and (21) become: 

s, = p-2s3 - Y S ,  

o=p-2s4-zs1 

s3 = - p  -2s1 + xs, - YS3 

s,= Y S 4 - z s 3  

S,S4= 1 .  

From (25) and (28): 

s, = ( p z 1 ’ 2 ) - 1  

s3 = z-3’2( p YZ - pz - $ p i ) .  

s, = p z ” 2  

and from (24) 

Equation (27) is redundant and (26) provides the differential equation: 

ZY-ZY l Z  3 z 2  1 p +  X Z - Y 2 +  +- -_ -  - 
2 2  4 z 2  I P = d  { z 

which, not withstanding the long coefficient of p, is just the Pinney equation (Pinney 
1950) usually associated with time-dependent oscillator problems. The solution of the 
time-dependent Schrodinger equation for ( 1 )  is then of the form (13)  with: 

where p,,( Q )  is the usual wavefunction for the time-dependent simple harmonic 
oscillator. 

Berry’s phase is calculated as before for (16) and the effect of the time-dependent 
coefficients in the Hamiltonian are seen in the time integral. We have that: 

where, since the expectation value refers to the ordinary oscillator, it may be replaced 
by h ( n + i ) .  

It should be apparent from the foregoing that the same techniques can be applied 
to Hamiltonians of the form: 

H ( q , p ,  t ) = 1 { Z ( t ) p 2 +  Y ( t ) ( q p + p q ) ) +  V ( q ,  t )  (34) 

which can be transformed to an invariant by a generalised canonical transformation 
which is point in the position. 
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